Cow Bacteroidetes ID™
Detection of the fecal Bacteroidetes Cattle Gene Biomarker for Cattle fecal contamination by Polymerase Chain Reaction (PCR) DNA Analytical Technology

Submitter: ABC Company
Date Received: October 3, 2011
Date Reported: October 11, 2011

<table>
<thead>
<tr>
<th>SM #</th>
<th>Client #</th>
<th>Analysis Requested</th>
<th>DNA Analytical Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 16294</td>
<td>01012011A</td>
<td>Cow Bacteroidetes ID</td>
<td>Negative</td>
</tr>
<tr>
<td>SM 16295</td>
<td>01012011B</td>
<td>Cow Bacteroidetes ID</td>
<td>Negative</td>
</tr>
<tr>
<td>SM 16296</td>
<td>01012011C</td>
<td>Cow Bacteroidetes ID</td>
<td>Positive</td>
</tr>
<tr>
<td>SM 16297</td>
<td>01012011D</td>
<td>Cow Bacteroidetes ID</td>
<td>Positive</td>
</tr>
<tr>
<td>SM 16298</td>
<td>01012011E</td>
<td>Cow Bacteroidetes ID</td>
<td>Positive</td>
</tr>
<tr>
<td>SM 16302</td>
<td>01012011F</td>
<td>Cow Bacteroidetes ID</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Limitation of Damages – Repayment of Service Price
It is agreed that in the event of breach of any warranty or breach of contract, or negligence of the Source Molecular Corporation, as well as its agents or representatives, the liability of the Source Molecular Corporation shall be limited to the repayment, to the purchaser (submitter), of the individual analysis price paid by him/her to the Source Molecular Corporation. The Source Molecular Corporation shall not be liable for any damages, either direct or consequential. The Source Molecular Corporation provides analytical services on a PRIME CONTRACT BASIS ONLY. Terms are available upon request.
Laboratory Comments

The submitted water samples were filtered for fecal Bacteroidetes. The filters were then eluted and centrifuged for DNA analysis. Fecal Bacteroidetes are found in abundant amounts in feces of warm-blooded animals. They are considered a good indicator of recent fecal pollution because they are strict anaerobes (i.e. they do not survive long outside the host organism).

All reagents, chemicals and apparatuses were verified and inspected beforehand to ensure that no false negatives or positives could be generated. In that regard, positive and negative controls were run to attest the integrity of the analysis. All inspections and controls tested negative for possible extraneous contaminates, including PCR inhibitors.

"-Summary and Evaluation of Client Results

"

DNA Analytical Method Explanation

Each submitted water sample was filtered through 0.45 micron membrane filters. Each filter was placed in a separate, sterile 5ml disposable tube containing a unique mix of beads and lysis buffer. It was then bead beaten for 5min. DNA extraction was prepared using the MoBio Power Water DNA Isolation kit (MoBio, Carlsbad, CA), as per manufacturer’s protocol.

Amplifications were run on an Applied Biosystems StepOne real-time thermal cycler (Applied Biosystems, Foster City, CA) in a final reaction volume of 20ul containing the sample extract, forward primer, reverse primer, probe and an optimized buffer. The following thermal cycling parameters were used: 50°C for 2 min, 95°C for 10 min and 40 cycles of 95°C for 15 s and 60°C for 1 min.

All assays were run in duplicate.

For quality control purposes, a positive control consisting of appropriate genomic DNA and a negative control consisting of PCR-grade water were run alongside the sample(s) to ensure a properly functioning reaction and to reveal any false negatives or false positives. The accumulation of PCR product is detected and graphed in an amplification plot. If the fecal indicator organism is absent in the sample, this accumulation is not detected and the sample is considered negative. If accumulation of PCR product is detected, the sample is considered positive.
Cow Bacteroidetes Theory Explanation

The phylum Bacteroidetes is composed of three large groups of bacteria with the best-known category being Bacteroidaceae. This family of gram-negative bacteria is found primarily in the intestinal tracts and mucous membranes of warm-blooded animals and is sometimes considered pathogenic.

Comprising Bacteroidaceae are the genus Bacteroides and Prevotella. The latter genus was originally classified within the former (i.e. Bacteroides), but since the 1990’s it has been classified in a separate genus because of new chemical and biochemical findings. Bacteroides and Prevotella are gram-negative, anaerobic, rod-shaped bacteria that inhabitant of the oral, respiratory, intestinal, and urogenital cavities of humans, animals, and insects. They are sometimes pathogenic.

Fecal Bacteroidetes are considered for several reasons an interesting alternative to more traditional indicator organisms such as E. coli and Enterococci. Since they are strict anaerobes, they are indicative of recent fecal contamination when found in water systems. This is a particularly strong reference point when trying to determine recent outbreaks in fecal pollution. They are also more abundant in feces of warm-blooded animals than E. coli and Enterococci. Furthermore, these latter two organisms are facultative anaerobes and as such they can be problematic for monitoring purposes since it has been shown that they are able to proliferate in soil, sand and sediments.

The Cow Bacteroidetes ID service is designed around the principle that fecal Bacteroidetes are found in large quantities in feces of warm-blooded animals. Furthermore, certain categories of Bacteroidetes have been shown to be predominately detected in cattle. Within these Bacteroidetes, certain strains of the Bacteroides and Prevotella genus have been found in cattle. As such, these bacterial strains can be used as indicators of cattle fecal contamination.

One of the advantages of the Cow Bacteroidetes ID service is that the entire water is sampled and filtered for fecal Bacteroidetes. As such, this method avoids the randomness effect of culturing and selecting bacterial isolates off a petri dish. This is a particular advantage for highly contaminated water systems with potential multiple sources of fecal contamination.

Accuracy of the results is possible because the method uses quantitative PCR (qPCR) DNA technology, qPCR allows quantities of DNA to be amplified into a large number of small copies of DNA sequences. This is accomplished with small pieces of DNA called primers that are complementary and specific to the Bacteroidetes genome.

Through a heating process called thermal cycling, the double stranded DNA is denatured and inserted with complementary primers to create exact copies of the DNA fragment desired. This process is repeated rapidly many times ensuring an exponential progression in the number of copied DNA. If the primers are successful in finding a site on the DNA fragment that is specific to the genome to be studied, then billions of copies of the DNA fragment will be available and detected in real-time. The accumulation of DNA product is plotted as an amplification curve. The absence of an amplification curve indicates that the Bacteroidetes Cow gene biomarker is not present. To strengthen the validity of the results, the Cow Bacteroidetes ID service should be combined with other DNA analytical tests such as the Cow Enterococcus ID and Cow Fecal Virus ID services to further confirm the results.

References